comment installer-ruby-sur-rails-sur-debian-12

Ruby on Rails or RoR is a free and open-source web application framework written in Ruby and released under the MIT
license. Rails is a full-stack web framework for easily building enterprise-grade applications. Rails shipped with
different tools that allow developers easily to create both frontend and backend applications. Ruby on Rails also has
built-in security features such as protection for common attacks like SQL injection, XSS, and CSRF.

Ruby on Rails provides a default structure for the database, rendering HTML templates, a web service, and a web page.
It follows the model-view-controller (MVC) architecture and also uses well-known design philosophies such as Don't
Repeat Yourself (DRY), Convention over Configuration (CoC), and active records pattern. Ruby on Rails was designed to
be fast and easy to use and learn, Some notable sites developed with Rails such as Twitch, Airbnb, Github, Soundcloud,
etc.

In this guide, we'll walk you through the installation of Ruby on Rails on the Debian 12 server. You will install Ruby on
Rails with a PostgreSQL database server and Rbenv Ruby version manager. You will also create a scaffold, the basic
structure of the Rails project.

Prerequisites

Before commencing, confirm you've got:

e A Debian 12 server.
e A non-root user with sudo administrator privileges.

Installing Dependencies

In the first step, you will install some basic dependencies on your Debian server. This includes the PostgreSQL database
server that will be used as the database for your Rails project, the node.js, and the Yarn package manager that will be
used by Rails to compile static assets.

To start, update and refresh your package index by executing the apt update command below.

Next, install dependencies using the following apt install command. This includes the PostgreSQL database server,
libpg driver, Node.js, Yarn, Git, and some system libraries and tools.

\"sudo apt install postgresql 1ibpg-dev nodejs yarnpkg git zliblg-dev build-essential libssl-dev libreadline-dev Uibyaml-dev
libsqlite3-dev sqlite3 libxml2-dev libxsltl-dev libeurl4-openssl-dev software-properties-common Uibffi-dev

Type y to confirm and proceed with the installation.

Once dependencies are installed, check the PostgreSQL server status using the following command. This will ensure
that PostgreSQL is running and enabled on your Debian machine.

sudosystemctl is-enabled postgresql
sudo systemctl status postgresql

If PostgreSQL is enabled, you should get the output.enabled. When PostgreSQL running, you should get the output
active(running) or active(exited).

root@debia

root@deb- e o systemctl is-enabled postgresqgl
enabled

root@debn o systemctl status postgresqgl

® postgresq ce - PostgreSQL RDBMS

Loaded: loaded (/1 temd/system/postgresql.service; enabled; preset: enabled
Active: active (ex since
Main PID: 13425 (code=exited. status=8/SUCCESS)

Lastly, check the Node.js and Yarn package manager by executing the command below.

| node --version
i

. yarnpkg --version

In this example, Node.js 18 and Yarn 1.22 is installed.

o I R M W e
root@debianl2:

Installing Rbenv

After installing package dependencies, the next step is to install Rbenv, the Ruby version manager for Unix-like
operating systems. With Rbenv, you can easily manage your Ruby apps environment, also you can install multiple Ruby
versions on your system.

Log in to your User using the following command.

su - user

Download the rbenv source code and the ruby-build plugin via the git command below.

git clone https://github.com/rbenv/rbenv.git ~/.rbenv
git clone https://github.com/rbenv/ruby-build.git ~/.rbenv/plugins/ruby-build

Now execute the following command to add a custom PATH to your shell.

echo 'export PATH="$HOME/.rbenv/bin:$PATH"' >> ~/.bashrc
echo 'eval "$(rbenv init -)"' >> ~/.bashrc
echo 'export PATH="$HOME/.rbenv/plugins/ruby-build/bin:$PATH""' >> ~/.bashrc

Reload your ~/bashre configuration to apply the changes. After executing the command, your rbenv installation should
be activated.

source ~/.bashrc

Verify rbenv by executing the rbenv command below. Ifrbenv installation is successful, you should see available rbenv
commands/options.

rbenv commands

commands
completions

exec
global
help
hooks

init

install
local
prefix

rehash

root
shell
shims

uninstall

sion
version
arsion-file
srsion-file-read
arsion-file-write
rsion-name
jon-origin
5

which

bob@adebi

Installing Ruby via Rbenv

With Rbenv installed, you can now install Ruby on your system. With Rbenv, you will install Ruby on your current
environment only, which does not affect the whole system. You will install Ruby 3.2.2 to your current user environment.

Execute the rbenv install command below to install Ruby/3.2.2 te your system.

“rbenv install 3.2.2

During the installation, you should see this:

112:~%
ddebianl2:~$ ¢ install 3.2.2
follow progres a 'tail -f /tmp/ruby-build.20230901012918.14838.log"' or pass --verbose
Downloading ruby-3.
=> https:// ha, ruby
Installing 3.2.2..,

Installed ruby-3.2.2 to /ho

e ney ault, run: rbe

rbenv global 3.2.2

Lastly, verify the Ruby version on your system using the command below.

ruby -v

If everything goes well, you should see Ruby 3.2.2 is installed.

Installing Ruby on Rails

At this point, your system is configured and ready to install Ruby on Rails to your Debian machine. In this example, you

will install Ruby on Rails 7.0, and check the list of available versions of Rails on the official site.

Execute the gem commands below to install the bundler, then install Ruby on Rails 7.0.7.2.

gem install bundler
gem install rails -v 7.0.7.2

Fetching bundl
Successfully i

er-2.4,19

Parsing documentation for bundler-2.4.19
Installing ri documentation for bundler-2.4.19

Done installing documentation

installed

alease of RubyGems 1is available:

n update

Fetching
Fetching
~etching
“etching
“etching
“etching
“etching
“etching
‘etching

tching

Fet
Fetchin
Fetchin
Fetchin
Fetchin
Fetchin
Fetchin
Fetchi

Fet:
F ng
-hing
tching
tching
tching
Fetching
Fetching

» active

undler after @ seconds

1.4.18 + 3.4.19!

--system 3.4.19° to uf e your install

*~5 gem install rails
ark-2.6.11.p¢
0-2.0.6.2em

as5upp: "o
rrent-ru 2
1.14.1.g¢

1.2.2.gen

1=-2.21.3.gem

th
lo
min
crass-l.u.o.gem
method_source-1.0.

T T T —

.gem

T

-test
ack-2 3.gen
ack-t =Fl
ailti T:.8:"
ailde a2
ctionview-7.¢
ctionpack-7.¢ 2.gem
ael-7. zem
active ord-7.8. m
mini_mime-1.1.5.gem
marcel-1.0.2.gem
erubi-1.12.08.gem
globalid-1.1.0.gem
activejob-7.0.7.2.gem
actiontext-7.6.7.2.gem

ails

2.ger

Now run the rebenv command below to rehash and reload your current environment.

i rbenv rehash

Lastly, execute the rails command below to ensure that Ruby on Rails is installed.

rails -h

21~% rails --version

rails mew A+

Options:
s [=-no-skip-namespace] Skip namespace (affects only
- chack], [--no-skip-col ¢ Skip collision check
[==ruby=PATH] Path to the Ruby binary of y«
i Default: Shome/bob/.rbenv/ve
[--template=TEMPL,T! Path to some application * & se a filesy
[--database=DATABASL Preconfigure for select topase (options: mysql

Creating First Rails Project

In this section, you will learn how to create your first project with Ruby on Rails. You will be using PostgreSQL as the
default database for your Rails project. To achieve that you must complete the following:

e Preparing the PostgreSQL user for application.
e Creating the first Rails project.

Prepare Database User

First, you must create a new PostgreSQL user that will be used for your Rails application. This user must have
privileges for creating databases and users.

Back to your user account and log in to the PostgreSQL server using the command below.

sudo su
sudo -u postgres psqgl

Now create a new user bob with the password p4sswordbob. Then, assign new privileges for creating a database and
roles to the user bob.

CREATE USER bob WITH PASSWORD 'p4sswordbob’;
ALTER USER bob CREATEDB CREATEROLE;

ebhianl2:-~$%
be sbianl2:~% sudo s
= password for bob:
root Tarm1? fhame fThnhk#
root@dc
sql (15.3 ian i=@+d ‘ul))
Type "help" - hel

postgres=# « TE U bob | PASSWORD 'p wordbob'
CREATE ROLE

postgres=# | R USER pob C ‘EDB ATEROC

ALTER ROLE

postgres-

Verify the list of users andyprivileges on your PostgreSQL server using the.command below.

\du

Type lq to log out from the PostgreSQL server.

Lastly, log in to your user and execute the following psql command to log in to the PostgreSQL server as the new user
bob.

: su - user
\ psql -U bob -h 127.0.0.1 -d postgres

Once connected to the PostgreSQL server, execute the following query to verify your connection information.

\conninfo

root@debianl: fhome/L
ebianl2: /home/boL - bob

&
-

1 nl = . 127.
Password for user bob:

psql (15.3 (Debian 15.3-8+ 2ul))
SSL connection (protocol: 1.3, cipher: T \ES_256_GCM_SHA , compression: off)
Type "help" for help.

ostgres=> \conninfo
u are connected to d a.1" at port "5432%,
5L connection (protocol " I - ; :sion: off)
stgres

zres=> ||

Type Iq to exit from the PostgreSQL server.

Creating Rails Project

After creating a PostgreSQL user, you can now start creating a new Rails project via the rails command-line utility.

To create a new rails project, run the rails command below. In this example, you will create a new project testapp with
the default database PostgreSQL.

1ils new te

ME . md
R e
FlU
config. i
.gitignore
gitattril
at Gemfile
run git init f i
hint: Using 'master' as name - the itial anch. is default branch ame
hint: is subject to char To configure » in L br: in al®
hint: of your new repc ies, which wi uppress this
hint:
hint: git confir Lobal dinit faultBra:
hint:
hint: Na CGl y chosen instead of 'master' are ke unk' and
hint: 'c Lopme . The just-created branch can be amed this command:
hint:
hint: g1 N -m <name>

Initialized empty Git repository in /home/bob/testapp/.git/
c = app

anplacente franfinipandfrat e

After the project is created, the new directory ~/testapp will also be created. Move into the ~/testapp directory and
open the database configuration config/database.ymli using your preferred text editor.

cd testapp/
nano config/database.yml

Change the default database settings for development, test, and production. Be sure to input your PostgreSQL
username and password.

development:
<<: *default
database: testapp development

The specified database role is being used to connect to postgres.
To create additional roles in postgres see '$ createuser --help .
When left blank, postgres will use the default role. This is

the same name as the operating system user running Rails.
username: bob

The password associated with the postgres role (username).
password: p4sswordbob

Connect on a TCP socket. Omitted by default since the client uses a
domain socket that doesn't need configuration. Windows does not have
domain sockets, so uncomment these lines.

host: localhost

The TCP port the server listens on. Defaults to 5432.
If your server runs on a different port number, change accordingly.
port: 5432

Save and exit the file when you're done.

Now run the rails command below to migrate the database. This will automatically create a new database for your
testapp project.

rails db:setup
rails db:migrate

bob i . PS5

ianl2;~/ ps ra :setup
Cre 1 database stapp_dev pment'
Cre 1 database stapp_tes

dals wob ftestapp /schema.rb doesn't exi yet. Run
»ad alter /i 'bob/test y/config/application.rbh t
~ftestc
[testapp$ rails db:migrate
~/testapp$ I

After the database is migrated, execute the rails command below to run the testapp project. This will run testapp within
your IP address on port 3000.

rails server -b 192.168.10.15

cestapg
:~/testapp: rails ser 192.168.108.15
Puma
R 7.0.7.2 application starting in op
> Run in/frails server --help®' for more rtup ions
ting in single mode...

version: 5.6.7 (ruby 3.2.2-p53) ("Bi. /ersion™)
Min threads: 5
Max threads: 5
EMY T OMMEITE .
PID

Now launch your favorite web browser and visit your server IP address followed by port 3000, such as

http://192.168.10.15:3000/. If your installation is successful, you should see the default index.html page of Ruby on
Rails.

Rails version: 7.0.7.2
Ruby version: ruby 3.2.2 (2023-03-30 reyision £51014f9c0) [x86_64-linux]

Press Ctrl+c to terminate your Rails application.

Rails Scaffolding for Starter Kit

A scaffold is an automatic way to generate the basic structure of a Rails project, which includes a controller, a model,
and a view.

Execute the rails command below to create scaffold books with three fields title, author, and publication year.

rails g scaffold books title:string author:string publication year:integer

wooks titleistring aut
R 1 7

7_create_books.rb

fixtures
[ute
route - tbook
invoke scaf controll
create

invoke

dex.h erb

it.html.erb
wow.html.erb

invoke

invaok

cres

Cr

invoke

create

invoke test_unit

invoke jbuilder

create ap jews /books/index.json. jbuilder

Now migrate the database to apply the changes using the rails command below.

i rails db:migrate

o~
UULMEUED 1 dITLL: ~jf LeES Lappe I

Next, run your Rails project by executing the rails server command below.

rails server -b 192.168.10.15

bob@deb | 1~ /testapps

bob@debiani::~/testapps rails - =-b 192.168.10.15

=> Booting Puma

=> Rails 7.0.7.2 applic starting in development

=» Run ‘bin/rails server --he for more startup options

Puma starting in single mode..

« Puma version: 5.6.7 (ruby 3.2.2-p53) ("Birdie's Version")
Min threads:
Max threads:

: PID: 2
« Listening on http://192.168.16.15:3600
Use Ctrl-C to stop

Once testapp is running, check the books scaffold via URL path /books, such as http://192.168.10.15:3000/books. If
everything goes well, you should see the generated scaffold like the following:

O (A 192.168.10.15:3000/books

Books

New boolk

You can now insert new data to the books scaffold like the following:

O A 192.168.10.15:3000/books/new

New book

Title

test |

Author
test author
Publication year

2023
Create Book

Conclusion

In conclusion, you've completed the installation of Ruby on Rails with the PostgreSQL database server and Rbenv on the
Debian 12 server. You've also learned how to generate scaffolds for basic structures for the Rails project.

