
comment installer-ruby-sur-rails-sur-debian-12
Ruby	on	Rails	or	RoR	is	a	free	and	open-source	web	application	framework	written	in	Ruby	and	released	under	the	MIT	
license.	Rails	is	a	full-stack	web	framework	for	easily	building	enterprise-grade	applications.	Rails	shipped	with	
different	tools	that	allow	developers	easily	to	create	both	frontend	and	backend	applications.	Ruby	on	Rails	also	has	
built-in	security	features	such	as	protection	for	common	attacks	like	SQL	injection,	XSS,	and	CSRF.

Ruby	on	Rails	provides	a	default	structure	for	the	database,	rendering	HTML	templates,	a	web	service,	and	a	web	page.	
It	follows	the	model-view-controller	(MVC)	architecture	and	also	uses	well-known	design	philosophies	such	as	Don't	
Repeat	Yourself	(DRY),	Convention	over	Configuration	(CoC),	and	active	records	pattern.	Ruby	on	Rails	was	designed	to	
be	fast	and	easy	to	use	and	learn,	Some	notable	sites	developed	with	Rails	such	as	Twitch,	Airbnb,	Github,	Soundcloud,	
etc.

In	this	guide,	we'll	walk	you	through	the	installation	of	Ruby	on	Rails	on	the	Debian	12	server.	You	will	install	Ruby	on	
Rails	with	a	PostgreSQL	database	server	and	Rbenv	Ruby	version	manager.	You	will	also	create	a	scaffold,	the	basic	
structure	of	the	Rails	project.

Prerequisites
Before	commencing,	confirm	you've	got:

A	Debian	12	server.
A	non-root	user	with	sudo	administrator	privileges.

Installing	Dependencies
In	the	first	step,	you	will	install	some	basic	dependencies	on	your	Debian	server.	This	includes	the	PostgreSQL	database
server	that	will	be	used	as	the	database	for	your	Rails	project,	the	node.js,	and	the	Yarn	package	manager	that	will	be
used	by	Rails	to	compile	static	assets.

To	start,	update	and	refresh	your	package	index	by	executing	the	apt	update	command	below.

sudo	apt	update

Next,	install	dependencies	using	the	following	apt	install	command.	This	includes	the	PostgreSQL	database	server,
libpq	driver,	Node.js,	Yarn,	Git,	and	some	system	libraries	and	tools.

sudo	apt	install	postgresql	libpq-dev	nodejs	yarnpkg	git	zlib1g-dev	build-essential	libssl-dev	libreadline-dev	libyaml-dev
libsqlite3-dev	sqlite3	libxml2-dev	libxslt1-dev	libcurl4-openssl-dev	software-properties-common	libffi-dev

Type	y	to	confirm	and	proceed	with	the	installation.

Once	dependencies	are	installed,	check	the	PostgreSQL	server	status	using	the	following	command.	This	will	ensure
that	PostgreSQL	is	running	and	enabled	on	your	Debian	machine.

sudo	systemctl	is-enabled	postgresql
sudo	systemctl	status	postgresql

If	PostgreSQL	is	enabled,	you	should	get	the	output	enabled.	When	PostgreSQL	running,	you	should	get	the	output
active(running)	or	active(exited).

Lastly,	check	the	Node.js	and	Yarn	package	manager	by	executing	the	command	below.

node	--version
yarnpkg	--version

In	this	example,	Node.js	18	and	Yarn	1.22	is	installed.

Installing	Rbenv
After	installing	package	dependencies,	the	next	step	is	to	install	Rbenv,	the	Ruby	version	manager	for	Unix-like
operating	systems.	With	Rbenv,	you	can	easily	manage	your	Ruby	apps	environment,	also	you	can	install	multiple	Ruby
versions	on	your	system.

Log	in	to	your	User	using	the	following	command.

su	-	user

Download	the	rbenv	source	code	and	the	ruby-build	plugin	via	the	git	command	below.

git	clone	https://github.com/rbenv/rbenv.git	~/.rbenv
git	clone	https://github.com/rbenv/ruby-build.git	~/.rbenv/plugins/ruby-build

Now	execute	the	following	command	to	add	a	custom	PATH	to	your	shell.

echo	'export	PATH="$HOME/.rbenv/bin:$PATH"'	>>	~/.bashrc
echo	'eval	"$(rbenv	init	-)"'	>>	~/.bashrc
echo	'export	PATH="$HOME/.rbenv/plugins/ruby-build/bin:$PATH"'	>>	~/.bashrc

Reload	your	~/.bashrc	configuration	to	apply	the	changes.	After	executing	the	command,	your	rbenv	installation	should
be	activated.

source	~/.bashrc

Verify	rbenv	by	executing	the	rbenv	command	below.	If	rbenv	installation	is	successful,	you	should	see	available	rbenv
commands/options.

rbenv	commands

Installing	Ruby	via	Rbenv
With	Rbenv	installed,	you	can	now	install	Ruby	on	your	system.	With	Rbenv,	you	will	install	Ruby	on	your	current
environment	only,	which	does	not	affect	the	whole	system.	You	will	install	Ruby	3.2.2	to	your	current	user	environment.

Execute	the	rbenv	install	command	below	to	install	Ruby	3.2.2	to	your	system.

rbenv	install	3.2.2

During	the	installation,	you	should	see	this:

Once	Ruby	is	installed,	execute	the	following	command	to	set	up	the	default	Ruby	version	to	3.2.2.

rbenv	global	3.2.2

Lastly,	verify	the	Ruby	version	on	your	system	using	the	command	below.

ruby	-v

If	everything	goes	well,	you	should	see	Ruby	3.2.2	is	installed.

Installing	Ruby	on	Rails
At	this	point,	your	system	is	configured	and	ready	to	install	Ruby	on	Rails	to	your	Debian	machine.	In	this	example,	you
will	install	Ruby	on	Rails	7.0,	and	check	the	list	of	available	versions	of	Rails	on	the	official	site.

Execute	the	gem	commands	below	to	install	the	bundler,	then	install	Ruby	on	Rails	7.0.7.2.

gem	install	bundler
gem	install	rails	-v	7.0.7.2

During	the	installation,	you	should	see	an	output	like	the	following:

Now	run	the	rebenv	command	below	to	rehash	and	reload	your	current	environment.

rbenv	rehash

Lastly,	execute	the	rails	command	below	to	ensure	that	Ruby	on	Rails	is	installed.

rails	version
rails	-h

If	the	installation	is	successful,	you	should	see	your	current	Rails	version	and	the	help	page	of	the	rails	command.

Creating	First	Rails	Project
In	this	section,	you	will	learn	how	to	create	your	first	project	with	Ruby	on	Rails.	You	will	be	using	PostgreSQL	as	the
default	database	for	your	Rails	project.	To	achieve	that	you	must	complete	the	following:

Preparing	the	PostgreSQL	user	for	application.
Creating	the	first	Rails	project.

Prepare	Database	User

First,	you	must	create	a	new	PostgreSQL	user	that	will	be	used	for	your	Rails	application.	This	user	must	have
privileges	for	creating	databases	and	users.

Back	to	your	user	account	and	log	in	to	the	PostgreSQL	server	using	the	command	below.

sudo	su
sudo	-u	postgres	psql

Now	create	a	new	user	bob	with	the	password	p4sswordbob.	Then,	assign	new	privileges	for	creating	a	database	and
roles	to	the	user	bob.

CREATE	USER	bob	WITH	PASSWORD	'p4sswordbob';
ALTER	USER	bob	CREATEDB	CREATEROLE;

Verify	the	list	of	users	and	privileges	on	your	PostgreSQL	server	using	the	command	below.

\du

You	should	see	the	user	bob	with	privileges	CREATEDB	and	CREATEROLE.

Type	\q	to	log	out	from	the	PostgreSQL	server.

Lastly,	log	in	to	your	user	and	execute	the	following	psql	command	to	log	in	to	the	PostgreSQL	server	as	the	new	user
bob.

su	-	user
psql	-U	bob	-h	127.0.0.1	-d	postgres

Once	connected	to	the	PostgreSQL	server,	execute	the	following	query	to	verify	your	connection	information.

\conninfo

You	should	see	that	you've	connected	to	the	PostgreSQL	server	as	a	user	bob.

Type	\q	to	exit	from	the	PostgreSQL	server.

Creating	Rails	Project

After	creating	a	PostgreSQL	user,	you	can	now	start	creating	a	new	Rails	project	via	the	rails	command-line	utility.

To	create	a	new	rails	project,	run	the	rails	command	below.	In	this	example,	you	will	create	a	new	project	testapp	with
the	default	database	PostgreSQL.

rails	new	testapp	-d	postgresql

The	output	of	the	command	should	look	like	this:

After	the	project	is	created,	the	new	directory	~/testapp	will	also	be	created.	Move	into	the	~/testapp	directory	and
open	the	database	configuration	config/database.yml	using	your	preferred	text	editor.

cd	testapp/
nano	config/database.yml

Change	the	default	database	settings	for	development,	test,	and	production.	Be	sure	to	input	your	PostgreSQL
username	and	password.

development:
		<<:	*default
		database:	testapp_development

		#	The	specified	database	role	is	being	used	to	connect	to	postgres.
		#	To	create	additional	roles	in	postgres	see	`$	createuser	--help`.
		#	When	left	blank,	postgres	will	use	the	default	role.	This	is
		#	the	same	name	as	the	operating	system	user	running	Rails.
		username:	bob

		#	The	password	associated	with	the	postgres	role	(username).
		password:	p4sswordbob

		#	Connect	on	a	TCP	socket.	Omitted	by	default	since	the	client	uses	a
		#	domain	socket	that	doesn't	need	configuration.	Windows	does	not	have
		#	domain	sockets,	so	uncomment	these	lines.
		host:	localhost

		#	The	TCP	port	the	server	listens	on.	Defaults	to	5432.
		#	If	your	server	runs	on	a	different	port	number,	change	accordingly.
		port:	5432

Save	and	exit	the	file	when	you're	done.

Now	run	the	rails	command	below	to	migrate	the	database.	This	will	automatically	create	a	new	database	for	your
testapp	project.

rails	db:setup
rails	db:migrate

Below	you	should	see	the	output	during	the	database	migration	of	the	testapp	project.

After	the	database	is	migrated,	execute	the	rails	command	below	to	run	the	testapp	project.	This	will	run	testapp	within
your	IP	address	on	port	3000.

rails	server	-b	192.168.10.15

In	the	following	output,	you	should	see	that	testapp	is	running.

Now	launch	your	favorite	web	browser	and	visit	your	server	IP	address	followed	by	port	3000,	such	as

http://192.168.10.15:3000/.	If	your	installation	is	successful,	you	should	see	the	default	index.html	page	of	Ruby	on
Rails.

Press	Ctrl+c	to	terminate	your	Rails	application.

Rails	Scaffolding	for	Starter	Kit
A	scaffold	is	an	automatic	way	to	generate	the	basic	structure	of	a	Rails	project,	which	includes	a	controller,	a	model,
and	a	view.

Execute	the	rails	command	below	to	create	scaffold	books	with	three	fields	title,	author,	and	publication_year.

rails	g	scaffold	books	title:string	author:string	publication_year:integer

Now	migrate	the	database	to	apply	the	changes	using	the	rails	command	below.

rails	db:migrate

Next,	run	your	Rails	project	by	executing	the	rails	server	command	below.

rails	server	-b	192.168.10.15

Once	testapp	is	running,	check	the	books	scaffold	via	URL	path	/books,	such	as	http://192.168.10.15:3000/books.	If
everything	goes	well,	you	should	see	the	generated	scaffold	like	the	following:

You	can	now	insert	new	data	to	the	books	scaffold	like	the	following:

Conclusion
In	conclusion,	you've	completed	the	installation	of	Ruby	on	Rails	with	the	PostgreSQL	database	server	and	Rbenv	on	the
Debian	12	server.	You've	also	learned	how	to	generate	scaffolds	for	basic	structures	for	the	Rails	project.

